# The Value of a Broadband Backbone for America's Electric Cooperatives

Russell Tucker, Chief Economist, NRECA





### Agenda



### Introductions



Transformation of communication networks



Broadband technologies and impact



Broadband backbone use cases and benefit analysis



# **NRECA and Broadband**

### **Overall NRECA Goals – Broadband**

- Work to address the two tiers of Concern:
  - (1) adoption of advanced communications technologies (utility backbone); and
  - (2) deployment of high speed broadband for consumer-members (retail service).
- Provide *leadership*, promote and propose *solutions* to members
- Communicate and advocate to public and policy makers
- Identify and create *strategic partnerships*
- Develop *due diligence guidance*, economic analysis, business cases and recommendations to members



### NRECA Resolution "Broadband for Rural America"

...take a prominent leadership & advocacy role to ensure co-ops have ability to provide broadband voluntarily, on their own or in partnerships.

...NRECA leadership is critical to present a unified voice by working together with others who share electric co-op interests in rural America.

### **NRTC** provides technology solutions to Rural America

#### NRTC BROADBAND SOLUTIONS NRTC GRID SOLUTIONS SMART GRID NETWORKS **BROADBAND NETWORKS ISP** Services AMI **Broadband Backbone** Fiber Design & Deployment Network Management Analytics Satellite Broadband **Demand Response Smart Services** Video Solutions Advanced Energy Mobile & Fixed Wireless **ASSESSMENT & DEPLOYMENT OPERATIONS SOURCING & LOGISTICS** Distribution/ Billing on Consulting & Engineering Vendor Equipment Customer Project Management Assessment Design Management Procurement Warehousing Behalf Support Care oOOL

ERICSSON

## The impetus for our joint white paper

- The number of electric cooperatives that are evaluating plans for consumer broadband for their territory is growing rapidly
- Many are conducting feasibility studies to understand the economics of a possible deployment
- However, we feel that the first factor that members should evaluate, though one that is more difficult to quantify, is the role of a broadband backbone for their internal operations
- NRTC, NRECA, and Ericsson sought to answer the following questions:
  - What is driving the demand for robust communications options?
  - What are the technology options to connect critical assets?
  - What are the applications enabled by a backbone and can the benefits be quantified?







### Introductions



### **Transformation of communication networks**



Broadband technologies and impact



Broadband backbone use cases and benefit analysis



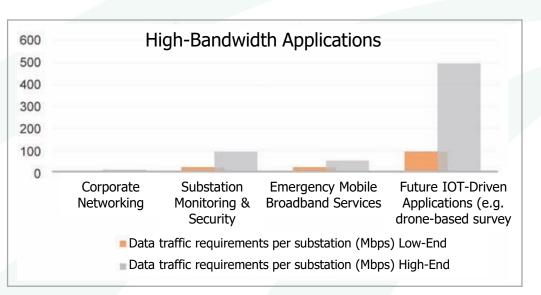
## **Transformation of communication networks**

- The DOE outlines four enabling technologies for the smart grid
- Communications is fundamental to the other 3 enabling technologies
- Wide range of smart grid applications increasingly depend on sensors, data, and analytics
- A broadband backbone communications system will provide the enabling technology upon which these applications will be built

Four technologies enable the smart grid Advanced Metering Infrastructure Meter Data Management Systems Supervisory Control and Data Acquisition Systems Communications Source: Department of Energy, NRECA July 8, 2019 | Pg. 6



### What is a broadband backbone?


- A high bandwidth, low-latency communications system to transport data critical to electric co-op operations
- It is an advanced electric utility infrastructure that enables a cooperative to maximize value from its smart grid
- A broadband backbone meets the volume-of-data and low-latency demands of current and future grid applications



# Factors driving backbone demand

| Factor                                                | Description                                                                                                                                             |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Proliferation of Smart<br>Grid                        | Backhaul communications necessary to support the data                                                                                                   |
| Cyber Security Needs                                  | Older technologies do not have the encryptions and firewalls necessary to protect data in transit over lines                                            |
| Additional Data Usage                                 | New applications, particularly video monitoring, require<br>high bandwidths to leverage them to their full potential                                    |
| Latency Requirements                                  | Technologies with automated response systems require<br>low-latency systems to respond to signals quickly<br>enough to make actionable decisions        |
| Improved Distribution<br>Reliability                  | Real-time monitoring of critical equipment can identify<br>failures before they occur, allowing for replacement<br>and circumventing a potential outage |
| Availability of Current<br>Communications<br>Services | 3 <sup>rd</sup> party carriers and providers are discontinuing older technologies as they transition to digital networks                                |

- These factors create the need for utilities to upgrade systems as they operationalize emerging technologies
- The lifecycle of a long-term asset forces them to look beyond current use cases to the expected needs of the future



### A broadband backbone supports grid optimization

- Grid optimization is all about improving performance, reducing costs, and enabling DER
- A broadband backbone can save coops money by avoiding significant costs when combined with distribution optimization techniques

#### **Projection of DER Generation, by Type**

|                      | 2018   | 2019   | 2020   | 2021   | 2022    | 2023    | 2024    | CAGR |
|----------------------|--------|--------|--------|--------|---------|---------|---------|------|
| Distributed Solar PV | 4,548  | 5,777  | 6,478  | 7,588  | 8,888   | 10,411  | 12,194  | 20%  |
| Small & Med. Wind    | 14     | 18     | 22     | 28     | 35      | 43      | 54      | 20%  |
| Microturbines        | 131    | 157    | 185    | 221    | 245     | 287     | 340     | 19%  |
| Fuel Cells           | 146    | 206    | 279    | 356    | 451     | 558     | 696     | 31%  |
| DG                   | 20,801 | 22,916 | 24,577 | 26,714 | 29,096  | 31,801  | 34,872  | 9%   |
| Energy Storage       | 1,694  | 1,824  | 1,976  | 2,197  | 2,301   | 2,410   | 2,527   | 16%  |
| Microgrids           | 550    | 627    | 746    | 790    | 906     | 1,038   | 1,190   | 16%  |
| EV Charging Load     | 4,557  | 5,964  | 7,551  | 9,179  | 10,884  | 12,640  | 13,950  | 23%  |
| DR                   | 35,456 | 40,200 | 45,291 | 50,582 | 57,214  | 62,877  | 69,125  | 12%  |
| Total                | 63,058 | 71,532 | 80,141 | 89,462 | 100,401 | 110,766 | 121,664 | 12%  |





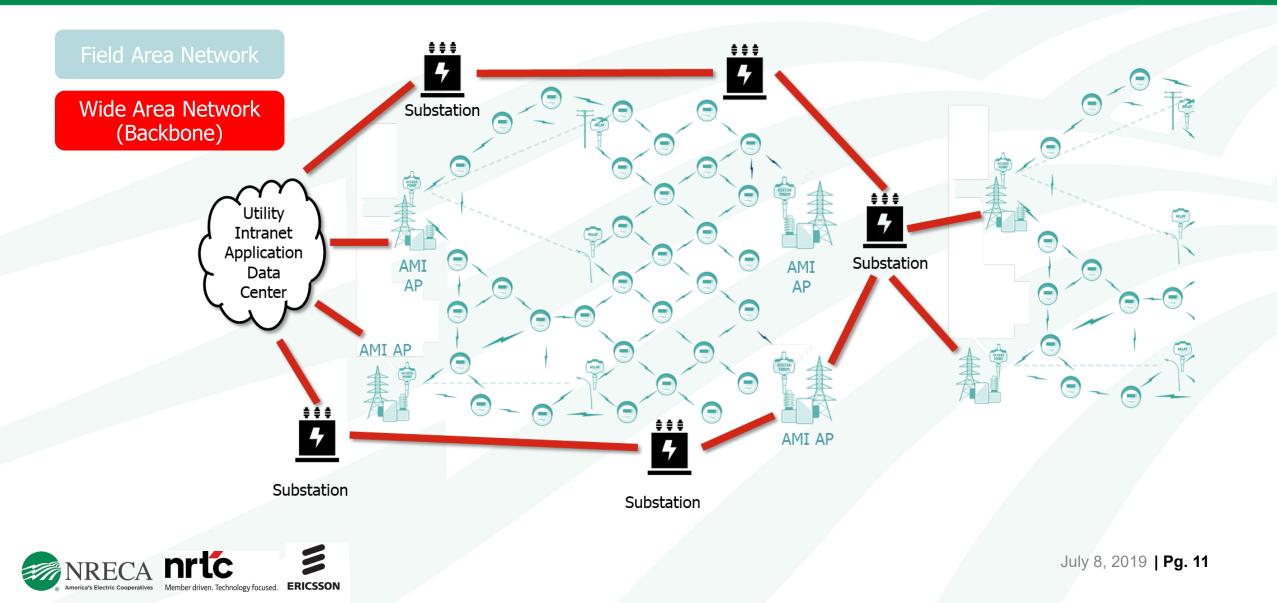


### Introductions

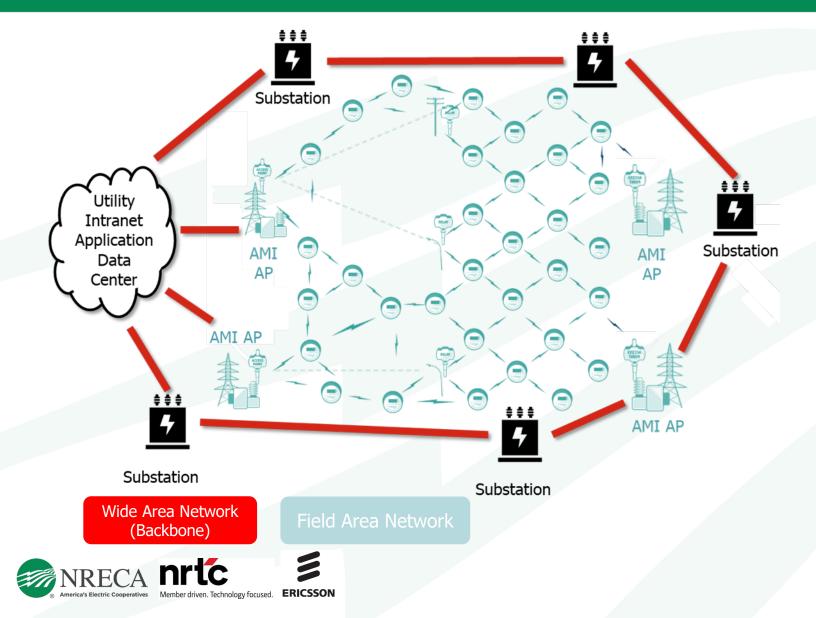


Transformation of communication networks




**Broadband technologies and impact** 




Broadband backbone use cases and benefit analysis



### **Network Backbone: Technology Options and costs**

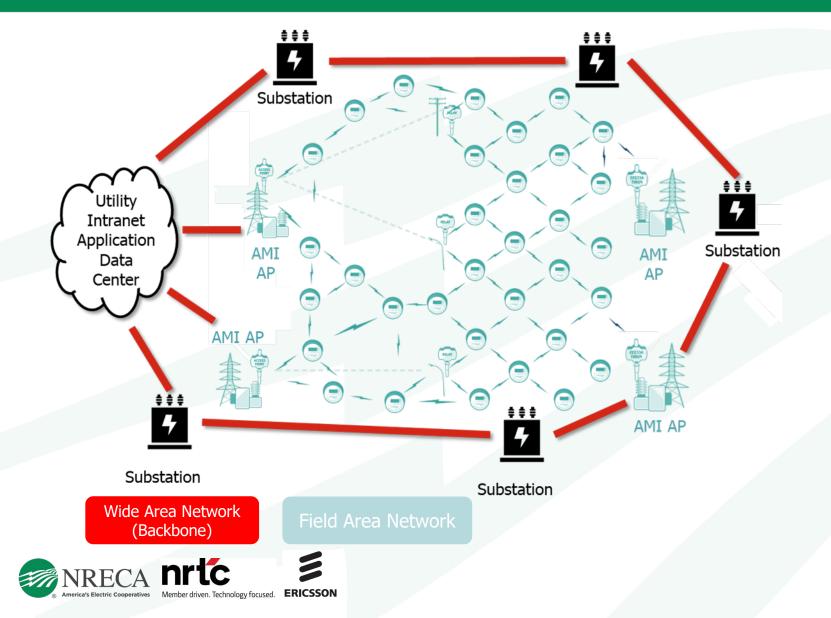


# **Typical Utility Network**



#### Backbone is often a mix

- Some Fiber
- Microwave
- DSL or Satellite


#### **Field Network varies**

- Metering Networks PLC, PtMP or Mesh
- Control Network SCADA
- Communications Networks
  - > Radio Dispatch, Fleet Mgmt

#### **Office/Application Networks**

- IP Based
- Multiple Applications
- Hosted or on Prem
- Separately Managed

# **Typical Utility Network**



### Challenges

- Multiple networks using different technologies
- Complex and expensive to deploy and support
- Little interoperability
- Hard to scale
- Not well positioned for future new services

### **Network Backbone: Technology Options and Costs**

#### Fiber

#### **Point-to-Point Wireless**

### **Cost Considerations**



- Most secure, most reliable, highest throughput, and lowest-latency option
- Most future-proof, long-lived asset
- Can be leveraged for FTTH
- More capital intensive and longer to deploy



- Historically lower bandwidth
- Current technology offers up to 1 Gbps
- Faster and more costeffective to deploy



- For fiber, costs will depend on a number of factors
  - % aerial vs. underground
  - Make ready costs
  - Distances of the runs
  - Strand count
- Wireless costs substantially lower and will also depend on a number of factors



# The impact of communications network transformation

#### Utilities

Advanced communications offer the ability to **control & operate the grid** in new ways, and allow cooperatives to track their assets in the field and operate a two-way grid, integrating new assets





#### Communities

Communications technology can provide benefits to all parts of their communities

- Utilities can provide a bridge to smart towns and cities, and new services, such as smart traffic lights, digital infrastructure, and waste management
- Can leverage fiber and other communications to connect their members to **broadband internet**
- Access to broadband enables advances in health care, education, business and economic growth
- Broadband is therefore a vital component in keeping rural communities competitive in the long term

# Connected Communities: A backbone is an asset not just to the utility, but to the community



#### **Smart Community Use Cases**



Smart

Aa



Sensors



Traffic Lights

Solar Inverters (

**FIR** 

EV Charging

Utility Meterina



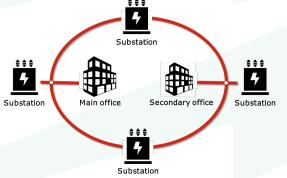
Acoustic Sensors



Digital Was Signage Manag

Waste Management




### Projects can be deployed in stages

A Broadband Backbone and other utility assets can be leveraged to provide broadband to your members



**Edge out** to serve cell towers/hospitals, etc.

Serve your members with **the right last-mile** solution for you









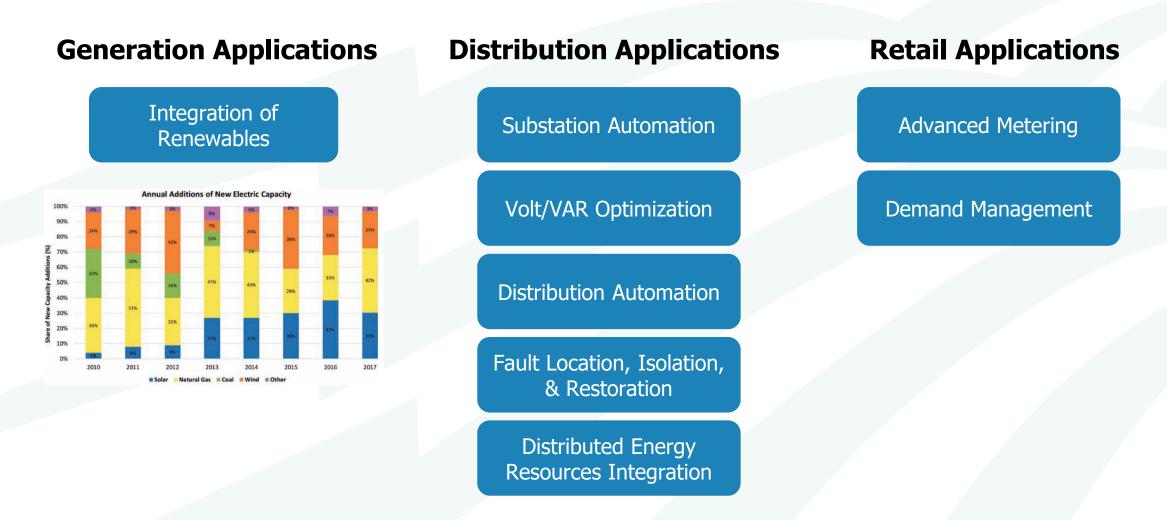


### Introductions



Transformation of communication networks




Broadband technologies and impact



### **Broadband backbone use cases and benefit analysis**



### **Broadband Backbone Use Cases**





# **Application selection and classification**

#### **Application and Benefit Cases that were considered**

ERICSSON

NRECA **NRÉC** 

| Application                           | Benefit Case                                          | Data Need                      | Broadband<br>Impact |
|---------------------------------------|-------------------------------------------------------|--------------------------------|---------------------|
| <b>AR-Based Substation Monitoring</b> | Condition-Based Asset Monitoring                      | Bandwidth, Latency             | High                |
| DA                                    | Reliability, Equipment Usage, Labor Savings           | Latency, bandwidth             | High                |
| AMI                                   | Reliability, Volt Opt, Equipment Usage, Labor Savings | Bandwidth                      | High                |
| SA                                    | Reliability, Volt Opt, Equipment Usage, Labor Savings | Latency, Reliability, Security | High                |
| Demand-Side Mgmt (DSM), Volt/VAR, CVR | Volt Opt, Equipment Usage, Labor Savings              | Reliability, Security          | High                |
| AM                                    | Volt Opt, Equipment Usage, Labor Savings              | Reliability, Security          | High                |
| Broadband to Home                     | New Revenue – Triple Play Services                    | Bandwidth, Reliability         | High                |
| Security – Video Surveillance         | Threat Reduction                                      | Bandwidth                      | High                |
| Emergency Load Shedding               | Volt Opt, Equipment Usage                             | Latency, Reliability, Security | High                |
| Broadband Service to C&I              | New Revenue                                           | Bandwidth, Reliability         | High                |
| DR                                    | Volt Opt, Equipment Usage, Labor Savings              | Reliability, Security          | High                |
| Outage Management                     | Reliability, Volt Opt, Equipment Usage, Labor Savings | Bandwidth                      | High                |
| Self-Healing Feeder Automation        | Reliability, Volt Opt, Equipment Usage, Labor Savings | Latency, Reliability, Security | Medium              |
| Load Forecasting                      | Volt Opt, Equipment Usage                             | mMTC                           | Medium              |
| EV Management                         | Volt Opt, Equipment Usage                             | mMTC                           | Medium              |
| Relay Protection                      | Reliability, Volt Opt, Equipment Usage, Labor Savings | Latency, Reliability, Security | Medium              |
| Phasor Measurement Unit               | Reliability                                           | Latency                        | Medium              |
| DER, Renewables                       | Volt Opt, Equipment Usage                             | Security                       | Medium              |
| Teleprotection                        | Equipment usage, labor savings                        | Latency, Reliability, Security | Medium              |
| SCADA                                 | Reliability, Volt Opt, Equipment Usage, Labor Savings | Latency, Reliability, Security | Medium              |
| Workforce Mobility                    | Reliability, Labor Savings                            | Reliability                    | Medium              |
| Mission-Critical Apps (PTT)           | Reliability, Labor Savings, Equipment Usage           | Reliability                    | Medium              |
| Power Quality                         | Volt Opt                                              | Latency, Reliability, Security | Medium              |
| Smart Home                            | Volt Opt, Equipment Usage, Labor Savings              | mMTC                           | Low                 |
| Electronic Mapping                    | Equipment Usage, Labor Savings                        | Latency, Reliability, Security | Low                 |
| Energy Conservation                   | Volt Opt, Equipment Usage                             | mMTC                           | Low                 |
| Energy Efficiency                     | Volt Opt, Equipment Usage                             | mMTC                           | Low                 |
| Facilities Energy Management          | Volt Opt, Equipment Usage                             | Latency, Reliability, Security | Low                 |
| Building Automation                   | Volt Opt, Equipment Usage                             | mMTC                           | Low                 |
|                                       |                                                       |                                |                     |

Use cases were prioritized and divided into major application areas to be valued

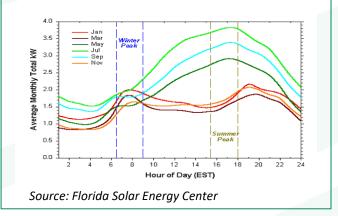
| Application              |  |
|--------------------------|--|
| DA                       |  |
| SA                       |  |
| AMI                      |  |
| vvo                      |  |
| DM                       |  |
| Outage Reduction         |  |
| AMI                      |  |
| DER                      |  |
| Carrier Cost Replacement |  |
|                          |  |

### **Benefit quantification**

- Benefits estimated on a per-meter basis, assessed and adjusted based on cooperative use cases, and vetted with subject matter experts including vendors and cooperative employees
- Initial valuations were then scaled over time to account for growth in customers, loads, and use cases
- Regional variability informed the ranges of values
- Some caveats:
  - Communications are only one part of the value chain they are necessary to enable the efficiencies, but investment in each application is necessary
  - These quantifications should be viewed as directional assessments of the value of a broadband backbone and its enabling use cases

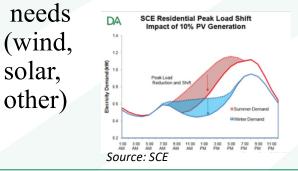
#### **Application and Valuation**

| Application              | Annual Valuation per Meter |  |
|--------------------------|----------------------------|--|
| DA                       | \$20-\$30                  |  |
| SA                       | \$1-\$3                    |  |
| AMI                      | \$12-\$18                  |  |
| VVO                      | \$14-\$29                  |  |
| DM                       | \$88-\$140                 |  |
| Outage Reduction         | \$1-\$3                    |  |
| AM                       | \$45–\$85                  |  |
| DER                      | \$3-\$6                    |  |
| Carrier Cost Replacement | \$1-\$3                    |  |
|                          |                            |  |




# **Additional Value Considerations**

Each utility is unique and needs to take into account use case applicability and service territory


Load Profile

- Summer or winter peaking
- Flexibility of generation



### **Geographic Features**

- Geographic density (line loss)
- Applicability of use cases
- Renewable integration







Must have smart meters



Can't double count savings (some use cases will attack same savings)

An utility specific business case is necessary for appropriate quantification-vendors can be a strong resource



### **Benefit quantification**

| 10,000 Member Coop             | 2018        | 2019        | 2027        |
|--------------------------------|-------------|-------------|-------------|
| Item                           |             |             |             |
| Revenue                        |             |             |             |
| Business                       | \$28,000    | \$28,840    | \$36,534    |
| Revenue – Total                | \$28,000    | \$28,840    | \$36,534    |
| Cost Avoidance                 |             |             |             |
| <b>Distribution Automation</b> | \$280,000   | \$288,456   | \$365,975   |
| Substation Automation          | \$1,000     | \$1,021     | \$1,205     |
| AMI                            | \$167,400   | \$172,455   | \$218,801   |
| Outage Management              | \$8,500     | \$8,757     | \$11,110    |
| Demand Management              | \$1,150,680 | \$1,185,431 | \$1,504,002 |
| Volt/VAR Optimization          | \$0         | \$0         | \$0         |
| Asset Management               | \$648,148   | \$667,722   | \$847,165   |
| DER                            | \$31,107    | \$44,060    | \$347,748   |
| <b>Previous Telecom Costs</b>  | \$54,000    | \$65,880    | \$323,320   |
| Cost Avoidance - Total         | \$2,340,835 | \$2,433,782 | \$3,619,327 |
| Total Economic Value           | \$2,368,835 | \$2,462,622 | \$3,655,861 |
| High Estimate                  | \$2,961,044 | \$3,078,277 | \$4,569,826 |
| Low Estimate                   | \$1,776,626 | \$1,846,966 | \$2,741,895 |

ERICSSON

NRECA **nrťc** 

Member driven. Technology focused.

#### 2018 Valuation for a 10,000 Member Coop



#### 2018 Valuation for a 50,000 Member Coop



# Where are we going?

Most applications will grow in value with customer growth, but two technology changes will drive faster growth

#### Distributed Energy Resources

DER benefits of a broadband network will grow at 31% CAGR over the next 10 years



Distributed Solar

Off peak charge and peak discharge creates a 5%-10% peak load reduction



Energy Storage



Energy Storage

**Electric Vehicles** 

ERICSSON

Off peak charge and peak discharge creates a \$0.07kWh savings

Off peak charge and peak creates a \$450 annual revenue opportunity per EV

\*note: did not value EVs used as storage

#### Legacy Telecom Costs

Dedicated support from telecoms for legacy circuits will increase costs at 22% per year



Leased Line Tension Carriers are decommissioning pre-existing connections due to new / efficient solutions



**Operational Challenges** Complexity and the pace of change are difficult to manage



## **Co-op Specific Quantifications**

The value of Smart Grid Applications will be different depending on a member's situation



### **Co-op specific AMI quantification examples**

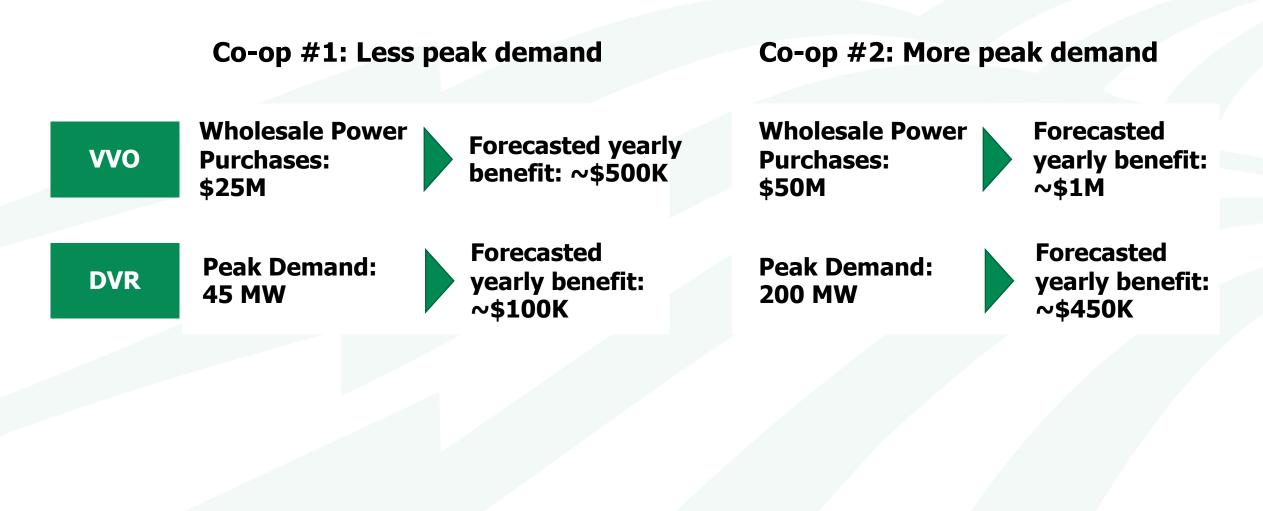
|                                 | Co-op #1:<br>Manual reads to AMI      | Co-op #2:<br>AMR to AMI upgrade       |
|---------------------------------|---------------------------------------|---------------------------------------|
| Remote disconnect/<br>reconnect |                                       |                                       |
| Save on past-due bills          |                                       |                                       |
| Save on non-<br>technical loss  |                                       |                                       |
| Meter reading                   |                                       |                                       |
| AMI backhaul                    |                                       |                                       |
|                                 | Forecasted Yearly<br>Benefit: ~\$1.3M | Forecasted Yearly<br>Benefit: ~\$700K |



### **Co-op specific OMS quantification example**

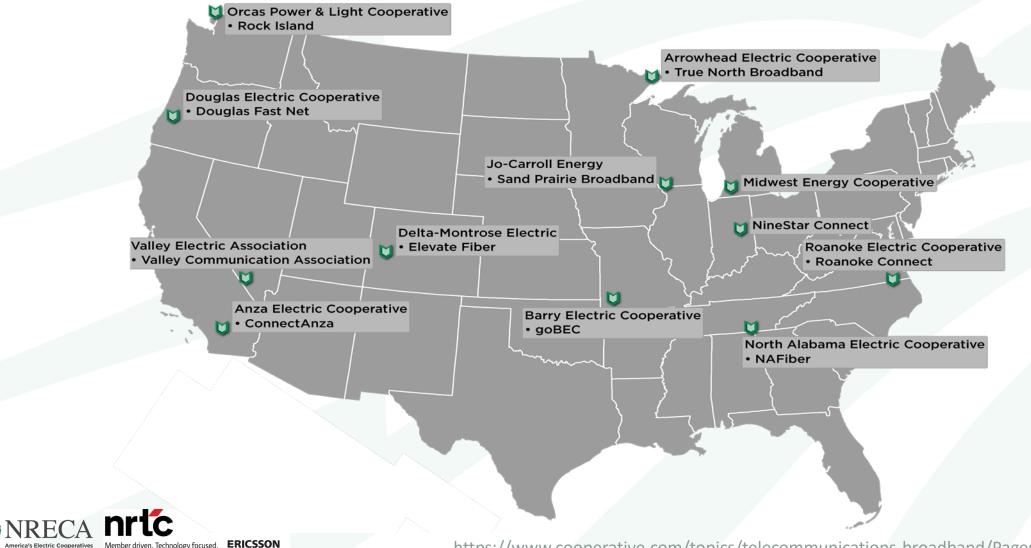
**Co-op #1: Forecasted OMS implementation benefit** 

~400 truck rolls saved @ \$500 each


Yearly savings for reduced truck rolls - \$200K

|       | Before | After | Change |
|-------|--------|-------|--------|
| SAIFI | 320    | 272   | 15%    |
| CAIDI | 3.0    | 2.3   | 15%    |
| SAIDI | 881    | 637   | 28%    |

Yearly **economic value to endmembers** of avoiding outages & minimizing restoration time - **\$1.2M** (this is **more intangible** - actual revenue saved is significantly less)




### **Co-op specific VVO & DVR quantification examples**





### Cooperatives Featured in NRECA's 2018 Broadband Case Study Series



https://www.cooperative.com/topics/telecommunications-broadband/Pages/default.aspx

### Take-Aways from Case Studies



In every case: The decision was made to leverage the utility's own broadband network backbone to serve members of the community at large

No universally applicable technology solution or well-tread business path



### Summary

- New applications and use cases for utility data will continue to grow, making a broadband backbone an important component of cooperative networks
- A broadband backbone is a long-term asset that can also be leveraged to provide benefits to our communities as a whole
- Cooperatives should develop a comprehensive 10-year plan that accounts for communications needs for all anticipated use cases over that period



